Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy.
نویسندگان
چکیده
While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.
منابع مشابه
Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy.
We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecula...
متن کاملSurface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy
X-ray absorption spectroscopy is a powerful probe of local electronic structure in disordered media. By employing extended x-ray absorption fine structure spectroscopy of liquid microjets, the intermolecular O–O distance has been observed to undergo a 5.9% expansion at the liquid water interface, in contrast to liquid methanol for which there is a 4.6% surface contraction. Despite the similar p...
متن کاملEffects of cations on the hydrogen bond network of liquid water: new results from X-ray absorption spectroscopy of liquid microjets.
Oxygen K-edge X-ray absorption spectra (XAS) of aqueous chloride solutions have been measured for Li(+), Na(+), K(+), NH(4)(+), C(NH(2))(3)(+), Mg(2+), and Ca(2+) at 2 and 4 M cation concentrations. Marked changes in the liquid water XAS are observed upon addition of the various monovalent cation chlorides that are nearly independent of the identity of the cation. This indicates that interactio...
متن کاملProbing hydrogen-bonding in binary liquid mixtures with terahertz time-domain spectroscopy: a comparison of Debye and absorption analysis.
Terahertz time-domain spectroscopy is used to explore hydrogen bonding structure and dynamics in binary liquid mixtures, spanning a range of protic-protic, protic-aprotic and aprotic-aprotic systems. A direct absorption coefficient analysis is compared against more complex Debye analysis and we observed good agreement of the two methods in determining the hydrogen bonding properties when at lea...
متن کاملProbing the local structure of liquid water by X-ray absorption spectroscopy.
It was recently suggested that liquid water primarily comprises hydrogen-bonded rings and chains, as opposed to the traditionally accepted locally tetrahedral structure (Wernet et al. Science 2004, 304, 995). This controversial conclusion was primarily based on comparison between experimental and calculated X-ray absorption spectra (XAS) using computer-generated ice-like 11-molecule clusters. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 144 19 شماره
صفحات -
تاریخ انتشار 2016